SOLUTIONS

(1) To the nearest tenth, what is the un-standardized rejection region with a 5% significance level? (E)
(2) To the nearest hundredth, what is the standardized test statistic? (D)
(3) To the nearest hundredth, what is the p-value? (B)
(4) In this specific problem what would a Type I error be? (A)
(5) If there is a lot of evidence in favor of the research hypothesis what does this suggest about the magnitude of the p-value? (D)
(6) Suppose a population is bell shaped and has a standard deviation of 2. A random sample of 17 observations is drawn. The sample mean is 6 . The 95% confidence interval estimator of the population mean is [5.05, 6.95]. Approximately how many observations in the sample should fall in the interval from [5.05, 6.95]? (C)
(7) At a 5% significance level, which of the following statements is TRUE? (A)
(8) What is the 99.44% confidence interval estimator of the population mean? (A)
(9) For the politician what is an appropriate hypothesis test and significance level? (E)
(10) You have not been given enough information to complete the hypothesis test. Using the information you do have, which of the following could be a correct conclusion? (D)
(11) If a minimum sample size of 100 is required to obtain a 95% confidence interval estimator of the population mean that is $X \pm 4$, the researcher is assuming that the population standard deviation is about \qquad . (E)
(12) For 10 degrees of freedom, $\mathrm{P}(\mathrm{t}>2)$ is in the range from \qquad (A)
(13) For a one-tailed test what does it mean if the test statistic equals the critical value? (C)
(14) What is the 95% confidence interval estimator of μ ? (B)
(15) A random sample of size 4 is drawn from a negatively skewed population with $\sigma=1$. You compute the confidence interval estimator of the mean using the formula: $\bar{X} \pm z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}$. What can you say about the center of your estimate and its width? (B)

